TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic

TB62736FUG

Step-up Type DC-DC Converter for White LEDs

The TB62736FUG is a high efficiency step-up type DC/DC converter that is designed especially for use as a constant current driver of white LEDs.
It is possible to drive 2-6 white LEDs connected in series using a lithium-ion battery. (Typ. 4 White LEDs)
This IC incorporates an N -ch-MOS transistor required for switching of an external inductor.
The forward current of the LEDs can be controlled by an external resistor. An analog voltage input and a pulse input system (PWM) can be used as a brightness control function.
The switching frequency is fixed at around 1.1 MHz .
This IC is best suited for use as a driver of white LED back lighting in color LCDs in PDAs, cellular phones and handy

Weight: 0.016 g (typ.) terminal devices.

Features

- Brightness control function : LED forward current 25~100\%
- Maximum output voltage : over 24V
- LED current values controlled by external resistance
$: 20 \mathrm{~mA}$ (typ.) @ RSENS=16 Ω
- Output power
: 400 mW
- Package
: SSOP6-P-0.95 (SOT23-6)
- High efficiency : maximum 87% (when used with components as recommended herein)
- Thermal Shutdown Function incorporated : 150 degree (typ.)

Pin Assignment (top view)

Note 1: The IC may break if mounted 180 degrees in reverse. Ensure the device is correctly orientated before assembley.

Note 2: The control pin must be set to a certain logic level, as unstable output could result if the pin is left open..
Note 3: Regarding soldering, the following conditions were confirmed
(1) Use of Sn -63Pd solder bath
solder bath temperature $=230^{\circ} \mathrm{C}$, dipping time $=5$ seconds, number of times $=$ once, use of R -type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder bath
solder bath temperature $=245^{\circ} \mathrm{C}$, dipping time $=5$ seconds, number of times $=$ once, use of R-type flux

Block Diagram

Pin Functions

No.	Symbol	Function
1	SHDN	Input pin for IC ON/OFF control and variable LED IF. 0 to 0.5 V : Shutdown Mode (IC shutdown) 1.0 V to $2.5 \mathrm{~V}: \mathrm{I}_{\mathrm{F}}=25$ to 100% Variable (Linear Control) Over 2.5V : $\mathrm{I}_{\mathrm{F}}=100 \%$ PWM signal input for IF control (see p.5)
2	NC	No Connection or Connected to GND
3	VIN	Supply voltage pin. Supply voltage range : 2.8 V to 5.5 V
4	SW	DC-DC converter switching pin - switch incorporates N-ch MOSFET
5	GND	Ground pin
6	FB	Connected to the cathode of LED

Note: The NC terminal is not connected to the internal circuit.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{opr}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$, unless otherwise specified)

Characteristics	Symbol	Ratings	Unit
Power supply voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to 6.0	V
Input voltage	$V_{\text {in }}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Switching pin voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{SW})$	-0.3 to 24	V
Switching pin current	IO (SW)	380	mA
Power Dissipation	P_{D}	0.41 (IC only)	W
		0.47 (IC mounted on PCB) (Note)	
Thermal resistance	$R_{\text {th (j-a) }} 1$	300 (IC only)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\left.\mathrm{R}_{\text {th (}} \mathrm{j}-\mathrm{a}\right) 2$	260 (IC mounted on PCB)	
Operating temperature range	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to 150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$

Note: Power dissipation is reduced by $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from the maximum rating for every $1^{\circ} \mathrm{C}$ exceeding the ambient temperature of $25^{\circ} \mathrm{C}$ (when the $I \mathrm{C}$ is mounted on a PCB).

Recommended Operating Condition ($\mathrm{T}_{\mathrm{opr}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Power supply voltage	$\mathrm{V}_{\text {IN }}$	-	2.8	-	5.5	V
$\overline{\text { SHDN }}$ pin H level input voltage	$\mathrm{V} \overline{\text { SHDN }}(\mathrm{H})$	-	2.7	-	VIN	V
$\overline{\text { SHDN }}$ pin L level input voltage	$\mathrm{V}_{\overline{\text { SHDN }}}(\mathrm{L})$	-	0	-	0.5	V
$\overline{\text { SHDN }}$ pin input pulse width	tpw	ON/OFF duty width	33	-	-	$\mu \mathrm{s}$
LED current (Average value)	lo1	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{RSENS}=16 \Omega \\ 4 \mathrm{LEDs}, \mathrm{~T}_{\mathrm{opr}}=25^{\circ} \mathrm{C} \end{gathered}$	-	20	-	mA

Electrical Characteristics ($\mathrm{T}_{\mathrm{opr}}=\mathbf{- 4 0 \sim 8 5 ^ { \circ } \mathrm { C }} \mathrm{V}_{\mathrm{cC}}=\mathbf{2 . 8} \mathbf{- 5 . 5} \mathrm{V}$, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Operating consumption current	IIN (ON)	$\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}, \mathrm{RSENS}=16 \Omega$	-	0.9	1.5	mA
Standby consumption current	IIN (OFF)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ pin current	ISHDN	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V}$	-10	0	10	$\mu \mathrm{A}$
Integrated MOS-FET switching frequency	fosc	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=3.6 \mathrm{~V}$	0.77	1.1	1.43	MHz
Switching pin protection voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{SW})$	-	-	25	-	V
Switching pin current	IO (SW)	-	-	400	-	mA
Switching pin leakage current	IOZ (SW)	-	-	0.5	1	$\mu \mathrm{A}$
FB pin feedback voltage	V_{FB}	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{RSENS}=16 \Omega \\ \mathrm{~T}_{\mathrm{opr}}=25^{\circ} \mathrm{C}, \mathrm{~L}=4.7 \mu \mathrm{H} \end{gathered}$	308	325	342	mV
FB pin line regulation	$\Delta \mathrm{V}_{\mathrm{FB}}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ center $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ to 5.0 V	-5	-	5	\%

Application Circuit Example

Protection at the time of LED opening

The zener diode in the application circuit example is necessary for the provision of over-voltage protection for when the LED becomes open. As the IC does not incorporate a voltage protection circuit, it is strongly advised that a zener diode be connected.

The zener diode should satisfy the following conditions:
i) Less than maximum output voltage of 24 V
ii) Greater than the total series LED VF
iii) Less than the maximum output capacitance C_{2}.

Moreover, by connecting a protection circuit such as R_ZD in the figure below, it is possible to control the output current when the LED becomes open, and to use a zener diode of lower tolerance.

An example of IZD control by R_ZD connection. (RSENS = 16Ω)

R_DZ (Ω)	IZD (mA)
500	0.6
100	1.0

In order to avoid adverse effects on driver characteristics,
Toshiba recommends a resistance of 500 ohms or less.

Protection circuit application

Output-side Capacitor Setting

It is recommended that the value of C 2 be equal to, or greater than $1.0(\mu \mathrm{~F})$.

External Inductor Size Setting

For each number of LEDs, the selected inductance should be greater than the value indicated in the table below.

Number of LEDs	Inductance (Unit: $\mu \mathrm{H})$	Note
2	4.7	
3	6.8	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
4	10	
5		
6		

Control of I_{F}

The resistance RSENS is connected between the FB pin and the GND pin.
The average current is controlled by the RSENS value, and calculated using the following equation:

$$
\mathrm{IF}(\mathrm{~mA})=[325 \mathrm{mV} / \operatorname{RSENS}(\Omega)]
$$

Margin of error is $\pm 5 \%$.

Current control using SHDN pin

This IC can carry out variable of the IF current by external resistance Variable range : 30 to 100%

SHDN Voltage	VSHDN $=0 \mathrm{~V} \sim 0.5 \mathrm{~V}$	VSHDN $=1 \mathrm{~V} \sim 2.5 \mathrm{~V}$	VSHDN $>2.5 \mathrm{~V}$	Note
Io Valuable Rate	0	$25-100$	100	UNIT $: \%$

Dimming using PWM signal input

A dimming function can also by applied using a PWM signal.
[Notes]
-When using a PWM signal, the minimum pulse width of the PWM should be greater than $33 \mu \mathrm{~s}$.
-Duty ratio of PWM function should be set at $10 \%-90 \%$.
-The recommended PWM frequency should be $100 \mathrm{~Hz} \cdot 10 \mathrm{kHz}$.
<<Output current is calculated using the following equation>>

$$
\operatorname{IF}(\mathrm{mA})=\frac{325[\mathrm{mV}] \times \text { ON Duty }[\%]}{\operatorname{RSENS}[\Omega]}
$$

I/O Equivalent Pin Circuits

2. $N C$ pin

The NC pin is not connected to any internal circuit.
4. FB pin

1. Application Circuit Example and Measurement Data (Reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	82.60 to 88.46	86.29
3 LED	82.69 to 87.78	85.95
4 LED	80.73 to 86.22	83.05
5 LED	80.73 to 87.28	83.45
6 LED	79.78 to 85.55	81.15

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to 5.0 V

2. Application Circuit Example and Measurement Data (Reference data)

- Evaluation conditions

L	$:$ 1001AS series (TOKO, INC) (Size $3.6 \times 3.6 \times 1.2 \mathrm{~mm})$
S-Di	$:$ CUS02 1 A/30 V (TOSHIBA Corp.)
LED	: NSCW215T (NICHIA Corp.)
C1	: C2012JB1E105K (TDK Corp.)
C2	: C2012JB1E105K (TDK Corp.)

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	83.10 to 88.60	86.55
3 LED	81.32 to 86.47	84.54
4 LED	79.15 to 84.63	81.30
5 LED	79.72 to 86.39	82.87
6 LED	78.91 to 85.10	80.47

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to 5.0 V

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center	MIN	MAX
2 LED	21.17	-3.32	1.73
3 LED	20.85	-1.95	1.38
4 LED	20.56	-1.79	1.15
5 LED	20.10	-1.82	1.22
6 LED	19.95	-1.94	1.26

3. Application Circuit Example and Measurement Data (Reference data)

- Evaluation conditions

L : LQH2M series (Murata Manufacturing Co.,Ltd.) (Size $2.0 \times 1.6 \times 0.95 \mathrm{~mm}$)
S-Di : CUS02 1 A/30 V (TOSHIBA Corp.)
LED : NSCW215T (NICHIA Corp.)
C1 : C2012JB1E105K (TDK Corp.)
C2 : C2012JB1E105K (TDK Corp.)

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathbb{I N}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	82.37 to 88.70	86.38
3 LED	80.19 to 86.55	84.12
4 LED	78.11 to 84.54	80.16
5 LED	74.79 to 84.94	79.94
6 LED	74.14 to 83.47	77.17

Output current in the range of $\mathrm{V}_{\mathbb{I N}}=3.0$ to 5.0 V

	Output Current (mA) $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center	Tolerance (\%)	
		MAX	
2 LED	21.19	-3.26	1.69
3 LED	20.90	-1.87	2.17
5 LED	20.63	-1.78	1.01
6 LED	20.09	-1.88	1.25

4. Application Circuit Example and Measurement Data (Reference data)

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	$79.85 \sim 86.97$	84.02
3 LED	$80.19 \sim 85.32$	83.39
4 LED	$78.77 \sim 83.60$	80.69
5 LED	$79.72 \sim 86.39$	82.87
6 LED	$78.91 \sim 85.10$	80.49

Output current in the range of $\mathrm{V}_{\mathbb{I N}}=3.0$ to 5.0 V

	Output Current (mA)	Tolerance (\%)	
		MIN	MAX
2 LED	21.19	-3.08	1.67
3 LED	20.89	-1.86	1.33
4 LED	20.64	-1.68	1.11
5 LED	20.10	-1.82	1.22
6 LED	19.95	-1.94	1.26

5. Application Circuit Example and Measurement Data (Reference data)

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	$81.78 \sim 88.79$	85.84
3 LED	$76.84 \sim 85.48$	82.17

Output current in the range of $\mathrm{V}_{\mathbb{I}}=3.0$ to 5.0 V

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center	MIN	MAX
2 LED	21.19	-2.99	1.64
3 LED	20.71	-1.98	1.44

Package Dimensions

SSOP6-P-0.95B

Unit: mm

Weight: 0.016 g (typ.)

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

